Search This Blog

Sunday, 20 April 2014

Expansion Using Special Algebraic Identities (Chap 4.2)

Expansion using Special Algebraic Identities

Now we will learn how to expand special products of algebraic expressions: 
Perfect Squares and Difference of Two Squares



Perfect squares: 

(a + b)² = a² + 2ab + b² 

(a - b)² = a² - 2ab + b² 


Difference of two squares:

(a + b)(a - b) = a² - b² 



  • Perfect Squares Example: 

a)  (x + 5)² = x² + 2(x)(5) + 5²    <------   Use (a + b)²  = a²  + 2ab +b² 
                   = x²  + 10x + 25                    Here a = x and b = 5.


b) (3x - 4)² = (3x)² - 2(3x)(4) + 4²   <------  Use (a - b)² = a²  - 2ab + b² 
               = 9x² - 24x + 16




*Be careful when expanding expressions like (x + 5)².

(x + 5)²  x² + 25 
(x + 5)² = (x + 5)(x + 5)


  • Difference of two Squares:

a)  (x+1)(x-1) = x² - 1²    <------ Use (a + b)(a - b) = a² - b²
                  = x² - 1 


b)  (x + y + 2)(x + y - 2)
    = [(x + y) + 2)][(x + y) - 2]    <------- Use (a+b)(a-b) = a² - b²
    = (x + y)² - 2²                                   Here a = (x + y) and b = 2
    = x² + 2xy + y² - 4     <------- Use (a+b)² = a² + 2ab + b².










No comments:

Post a Comment